NUMERICAL MODELLING OF TRANSITION REGION
DYNAMICS

L. TERIACA AND J. G. DOYLE
Armagh Observatory
Armagh BT61 9DG, N. Ireland

Abstract. We explore the idea that the occurrence of nano-flares in a
magnetic loop around the O VI formation temperature could explain the
observed red-shift of mid-low transition region lines as well as the blue-shift
observed in low coronal lines ($T > 6 \times 10^5$ K). Observations are compared to
numerical simulations of the response of the solar atmosphere to an energy
perturbation of 4×10^{24} ergs representing an energy release during magnetic
reconnection in a 1-D semi-circular flux tube. The temporal evolution of
the thermodynamic state of the loop is finally converted into C III 977, C IV
1548, O V 630, O VI 1032, Ne VII 465 and Ne VIII 770 line profiles in non-
equilibrium ionization. Performing an integration over the entire period of
simulation, redshifts of 8.5, 6.1 and 1.7 km s$^{-1}$, are found in C III, C IV, and
O V while blue-shifts of -1.8, -3.9 and -10.7 km s$^{-1}$ were derived for O VI,
Ne VII and Ne VIII respectively, in good agreement with observations.

1. Introduction

During the last two decades, observations of red-shifted emission lines
formed at transition region (TR) temperatures were obtained by many
authors using several UV instruments with different spatial resolution (see
Brekke et al. 1997 and references therein). Brekke et al. (1997) and Chae
et al. (1998) have shown that for the 'quiet' Sun the red-shift is peaked
around 1.5×10^5 K with a value of ~ 11 km s$^{-1}$. Peter & Judge (1999)
found blue-shifts at disk center for three coronal lines (i.e., Ne VIII at 770
Å and 780 Å and Mg x at 625 Å). Recently, Teriaca et al. (1999a) found
evidence for blue-shift in both the 'quiet' Sun and in an active region at
upper TR and coronal temperatures. Here we investigate the consequences
of these observational results via a comparison with numerical studies.
2. Observational Results

Teriaca et al. (1999a) have shown that the temperature variations of the Doppler shifts and non-thermal velocities in the ‘quiet’ Sun and active region have important implications for the validity of the physical models for the red-shift (or down-flow) problem. In Fig. 1 we show the behaviour of the Doppler shift versus temperature of formation for an active region as reported by Teriaca et al. (1999a). From their measurements it is possible to infer that the reversal from red-shift to blue-shift takes place around $\log T = 5.7$ in the active region while in the ‘quiet’ Sun a value between $\log T = 5.7$ and $\log T = 5.75$ can be estimated (Teriaca et al. 1999a).

3. Modelling

For the redshift problem, Hansteen (1993) presented a physical model, considering nano-flares occurring at the top of coronal loops, generating MHD waves that propagate downward along the magnetic fields towards and through the transition region.

This model was extended by Hansteen et al. (1996) including the reflection that the chromosphere exerts on the downward travelling waves. This model is able (as also pointed out by Peter & Judge 1999) to explain the presence of blue-shift together with red-shift within one model.

Following the suggestion of Peter & Judge (1999) we support the idea of the prevalent occurrence of magnetic reconnection around the O VI formation temperature (3×10^5 K) as a source for the red-shift observed in the low and middle transition region and for the blue-shift seen in the upper transition region and coronal lines.

In the present work the small-scale energy depositions are simulated in a one-dimensional semi-circular rigid magnetic flux tube (see, e.g., Sterling et al. 1991, 1993; Mariska 1992; Sarro et al. 1999; Teriaca et al. 1999b). After the hydrodynamics variables are computed, we calculate the ion populations for three different elements, and finally a line synthesis program gives UV line profiles suitable for comparison with observations.

4. Observational Consequences

In order to calculate the ion populations along the loop for a given time we have to integrate the ionization equations, i.e.,

$$\frac{\partial N_i}{\partial t} + \frac{\partial (N_i \cdot v)}{\partial s} = N_e (N_{i+1} \alpha_{i+1} + N_{i-1} S_{i-1} - N_i (\alpha_i + S_i))$$

(1)

where α_i and S_i are the recombination and ionization coefficients of ionization stage i and N_i is the volume number density of ion i.

Once the ion populations are computed, the emissivity of a given emission line per unit interval of wavelength in an optically thin, collisionally excited line can be obtained by using the standard equation

$$E_{\lambda} \propto \frac{h \epsilon \Omega}{\lambda} \frac{N_{I}}{N_{\text{ion}}} \frac{N_{\text{ion}}}{N_{\text{elem}}} \frac{N_{\text{elem}}}{N_{H}} \frac{N_{\text{ion} \text{N}_{\text{ion}}}}{N_{e}} \exp \left(\frac{W}{kT} \right) \phi(\lambda)$$

(2)

For allowed transitions (e.g., C IV 1548, O VI 1032 and Ne VIII 770) the bulk of the population of the ions resides in the ground level. This means that is possible to assume that $N_{I}/N_{\text{ion}} = 1$. The other 3 ions considered here (i.e., C III, O V and Ne VIII) belong to the beryllium isoelectronic sequence. Beryllium-like ions contain metastable levels and the strong resonance transition $2s^{2}1S_{0} \rightarrow 2s2p^{1}P_{1}$ give rise to some of the most prominent lines in solar and stellar spectra (e.g., C III 977, O V 630 and Ne VIII 465). In these cases the level population need to be evaluated as a function of the electron density and temperature. The population of the ground level has, hence, been calculated using the CHIANTI database and the related software (Landi & Landini, 1998; Landini & Monsignori Fossi 1990).

Given a distribution of emissivities along the loop, the total intensity
can be calculated as

\[I_\lambda = \int_{0}^{s_e} E_\lambda ds \]

(3)

where \(s_e \) is the total length of the loop.

5. Numerical Results

In the results shown in Fig. 1, an energy input of \(4 \times 10^{24} \) ergs was released at an height of 5400 km (corresponding to \(\log T = 5.7 \)) in a 1-D magnetic loop. The temporal evolution of the thermodynamic state of the loop is converted into \(\text{C III} \ 977 \text{ Å}, \text{C IV} \ 1548 \text{ Å}, \text{O V} \ 630 \text{ Å}, \text{O VI} \ 1032 \text{ Å}, \text{Ne VII} \ 465 \text{ Å}, \text{Ne VIII} \ 770 \text{ Å} \) line profiles (see Teriaca et al. 1999b).

Performing an integration over the entire period of simulation (55 seconds), redshifts of 8.5, 6.1 and 1.7 km s\(^{-1}\), are found in \(\text{C III}, \text{C IV}, \text{and O V} \) while blue-shifts of 1.8, 3.9 and 10.7 km s\(^{-1}\) were derived for \(\text{O VI}, \text{Ne VII} \) and \(\text{Ne VIII} \) respectively, in good agreement with observations (see Fig. 1).

We trust our results shed further light into the physics and modelling of the complexity of the solar (and stellar) transition region. We plan to develop the modelling of the nano-flare mechanism exploring in detail the parameter space, calculating the response of the model to different amount of deposited energy at different temperatures.

Acknowledgements

Research at Armagh Observatory is grant-aided by the Dept. of Education for N. Ireland while partial support for software and hardware is provided by the STARLINK Project which is funded by the UK PPARC. This work was partly supported by PPARC grant GR/K43315.

References

Magnetic Reconnection in the Solar Atmosphere, ASP Conference Series 111, 116
Landi E. & Landini M., 1998, \textit{A\&A S} 133, 411
Landini M. & Monsignori Fossi, B. C., 1990, \textit{A\&A S} 82, 229
Teriaca L., Banerjee D. & Doyle J.G., 1999a, \textit{A\&A} 349, 636